
Journal of Applied Mechanics and Technical Physics, Vol. 44, No. 2, pp. 249–254, 2003

ASYMPTOTIC MODELING OF NONLINEAR

WAVE PROCESSES IN SHOCK-LOADED

ELASTOPLASTIC MATERIALS

UDC 534.222+539.374N. N. Myagkov

Nonlinear wave processes in shock-loaded elastoplastic materials are modeled. A comparison of the
results obtained with experimental data and numerical solutions of exact systems of dynamic equations
shows that the model equations proposed qualitatively describe the stress-distribution evolution in both
the elastic-flow and plastic-flow regions and can be used to solve one- and two-dimensional problems
of pulsed deformation and fracture of elastoplastic media.
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Introduction. Studying the evolution of nonlinear waves generated by an explosion or shock loading of
materials and structures is of scientific and practical interest. Experiments of this kind are usually performed under
conditions of pulsed loading produced by a contact explosion of explosives or by an impact with velocities up to
2 km/sec, which corresponds to the stress range from several pascals to tens of gigapascals. In these cases, the stress
amplitude is usually smaller than the bulk modulus (but much higher than the elastic limit); therefore, asymptotic
methods can be used to model shock-wave processes. In most cases, apparently, asymptotic models are the only
tool to perform analytical studies and construct simplified numerical algorithms.

1. Asymptotic Models of Nonlinear Longitudinal Waves Propagating in Elastoplastic Media.
Myagkov [1, 2] proposed an asymptotic model of propagation of nonlinear longitudinal waves in elastoplastic media.
The equations of the model have the form [1, 2]
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u1 are the components of the stress tensor and velocity vector of the medium, ρ0 is the unperturbed density, ε, ε∆,
ν, and µ are small parameters: ε is determined as the ratio of the stress amplitude to the bulk modulus and ε∆

characterizes the transverse divergence (wave diffraction) and is determined as the squared ratio of the wavelength to
the linear dimension of the loading region, ν = (C2

long−C2
0 )/(2C2

0 ) (Clong is the phase velocity of longitudinal elastic
waves), µ characterizes the internal-friction viscosity and thermal conductivity, and the parameter α is determined
from the equation of state.

Equations (1) are closed by the constitutive equation of the medium, which gives a functional relation between
ψi(z, ξi) and Vi(z, ξi). This relation can be written as ψi = R̂[Vi], where R̂[Vi] is the result of the action of the
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nonlinear operator specified implicitly by the solution of the constitutive equation. To ensure uniform applicability
of Eqs. (1) for z 6 O[min {ε−1, µ−1, ν−1, ε−1

∆ }], it is sufficient to satisfy the conditions
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i, j = 1, 2 (i 6= j). The first condition in (2) is satisfied by specifying appropriate boundary conditions. The form of
the integrals J (ν)

i implies that the second condition in (2) should hold, at least, for rapidly decaying solutions Vj as
|ξj | → ∞. Generally, whether this condition is satisfied can be verified only for the known functions Vj , i.e., when
the problem is solved.

Deriving Eqs. (1), one can obtain “self-consistent” expressions that give the velocity-stress relations with
accuracy to terms of the second order of smallness inclusively:
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Expressions (3) generalize the relations known in nonlinear acoustics [3] to the case of an inelastic medium.
To take into account the interaction between nonlinear waves that refer to different characteristic directions,

in contrast to (1), the phase variables should be written in the form [1, 2]

ξi = t′ − λ−1
i (x′1 + εΦi(x′1, t

′) + νθi(x′1, t
′)), i = 1, 2, (4)

i.e., corrections of order ε and ν are introduced into the phase variables. As a result, the starting system of equations
is again reduced to Eqs. (1), constitutive equation, and equations for the phase functions:
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Here V = V1 + V2. We note that the wave interaction is taken into account implicitly by nonuniform deformation
of the phase variables in the solution that ignores the interaction.

Introduction of corrections of order ε and ν into the phase variables extends the range of applicability of
the solutions of Eqs. (1) to the case of extended waves. In this case, the solutions of Eqs. (1) yield the first
approximation, which is uniformly applicable for z 6 O[min {ε−1, µ−1, ν−1, ε−1

∆ }].
It is worth noting that the constitutive equation enters into system (1), which describes quasiplane waves,

in the same manner as into the system of equations for plane waves. In solving particular problems, it is necessary
to specify the form of the dependence ψi = R̂[Vi]. For example, if dislocation relations are used for this purpose,
it is convenient to write the constitutive equation in the form proposed by Malvern and Duval [4], which can be
written in our notation as
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where εpl is the plastic shear strain. Based on the dislocation concepts, the plastic-strain rate of polycrystalline
solids is usually determined by the Orowan relation [5].

The dependences ψ = ψ(V ) closing Eqs. (1) can be specified using the constitutive relations of the theory
of small elastoplastic strains [6]. If an elastoplastic-flow model of the Prandtl–Reuss type [6, 7] is used to describe
the plastic behavior of a medium, the constitutive equation can be written as
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The parameter λ̄ is determined from the Mises yield criterion, which has the form |ψi| 6 Y/(3G) for uniaxial strain
(Y is the tensile yield point and G is the shear modulus). In the general case, the yield point is a function of
pressure, temperature, plastic strains, strain rates, and other parameters of state.

Using Eqs. (3), one can easily estimate the residual mass velocity in the central cross sections of the specimen
after passage of a localized load pulse for which the normal stress tends to zero as ξ1 → ±∞. The residual velocity
occurs due to the hysteresis of the elastoplastic-deformation cycle and is given by u′1 = −(3/2)νψ1(+∞), where
ψ1(+∞) = −Y/(3G) [the velocity in (3) was estimated for µ′ = 0]. The residual mass velocity was observed
experimentally, for example, in [8].

Using the variables (t′, ξ̃i), we write the approximate system of equations similar to (1):
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Here ξ̃i = x′1−λit′ (i = 1, 2). In this case, the interaction of nonlinear waves corresponding to different characteristic
directions is also taken into account by expressing the phase variables in the form (4) and subsequent writing
equations for the phase functions.

2. Plane Problems of Propagation and Interaction of Shock Waves. 2.1. Propagation of a Shock
Pulse Induced by Plate Collision. We consider the normal impact of a plate of thickness l with a velocity u0 > 0
(u0/C0 ∼ ε� 1) upon the surface of a quiescent target plate of thickness L at the moment t = 0. Since the in-plane
dimensions of the plates are much greater than their thickness, the problem can be treated in one-dimensional
formulation. We assume that the impactor and target are made of the same material (aluminum).

We consider the wave evolution V1 in the target under the assumption that l is small compared to L, which
is typical of experiments. In this case, the boundary condition at the free surface is written as

V1 =
{
u0/C0, 0 < t 6 t1, x1 = −l + u0t,

0, t > t1, x1 = −l + u0t1,
(7)

where t1 = (l/C0)/(1 + (α + 2u0)/(8C0)). In (7), the profile distortion caused by elastoplastic deformation during
propagation of the shock wave V2 from the collision surface to the free surface of the impactor is ignored, but the
phase shift due to nonlinearity is taken into account.

To describe the shock-wave evolution in the target, we find the solution V1 of Eq. (1′) for the two-dimensional
case (ε∆ = 0) subject to the initial condition

V1 =
{
u0/C0 > 0, −l 6 x1 < 0,

0, 0 6 x1 6 L,
t = 0

and the boundary condition (7) with allowance for the fact that V2 = 0 in the central cross sections of the target.
The initial pressure was determined by solving the problem of the discontinuity decay at the contact boundary
x1 = 0. It was assumed that ψ1 = 2τ/(3G), where τ = −(σ1 − σ2)/2.

To describe the behavior of the medium, we employ the dislocation model. We use Eq. (6) in which ξ1 is
replaced by ξ′1 = (x1 − C0t)/l and determine the plastic strain rate by the Orowan relation [5]

∂εpl

∂ξ′1
= bNdvd,

where b is the Burgers displacement. The specific dependences for the density of travelling dislocations Nd and
their averaged velocities vd were taken in accordance with the model proposed in [9]. The other parameters of
the material were as follows: ρ0 = 2.787 g/cm3, bulk modulus K = 764 kbar, and Poisson’s ratio was set equal
to 0.33. The equation of state has the form P = (K/n)[(ρ/ρ0)n − 1], where n = 4.1. Thus, the parameters α and
ν′ = 2ν/(α+ 2) in Eq. (1′) take the values α = 3.1 and ν′ = 0.1.

The problem posed was solved numerically using artificial viscosity for a collision velocity u0 = 1.2 km/sec
and an impactor thickness of 1.5 mm. The stress-wave profiles and the distribution of the maximum shear stresses τ
in the target plate were obtained for various times after the impact. Figure 1 shows the curves τ(X), where
X = x1|t=0. One can see that the results obtained agree with the numerical solution of the exact system of
equations [9].

2.2. Reflection of the Shock Pulse of Finite Duration from the Free Surface. When the shock pulse arrives
at the free surface, its reflection occurs, i.e., the incident pulse interacts with the reflected wave. Equations (1), (4),
and (5) allow one to study the problem of shock-pulse reflection for small but finite strains.
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Fig. 1. Distribution of the shear stress τ at various times (the points refer to the numerical solution of [9]).

Fig. 2. Velocity of the free surface us versus time: the solid curve refers to the numerical solution that
takes into account the interaction between the incident and reflected waves, the dashed curve refers to the
numerical solution in which this interaction is ignored, and the dotted curve refers to the experimental
data obtained by Taylor and Rice [10, p. 29].

We model the experimental data obtained by Taylor and Rice [10, p. 29] using the dislocation model [5].
The wave interaction was calculated using the one-dimensional variant of Eqs. (1) and equations for the phase
functions (4) and (5). Figure 2 shows the velocity of the free surface us versus time for an armco-iron plate 5.08 cm
thick, which was loaded by the normal impact with a velocity of 170 m/sec (the impactor was made of the same
material as the target). One can see that the numerical solution that takes into account the interaction between
the incident and reflected waves agrees well with the experimental data obtained by Taylor and Rice.

To measure the velocity of the specimen surface, we used a laser interferometer [10]. At the contact surface
between the specimen and interferometer window, the intensity and sign of the reflected wave depend on the
impedance ratio ǣ = ρ̄C̄/(ρ0C0) (ρ̄ and C̄ are the density and speed of sound for the material of the window,
respectively): V2 = −V1(1 − ǣ)/(1 + ǣ). Windows of laser interferometers are usually made of quartz glass,
sapphire, LiF, etc. If ǣ < 1, the reflected wave is a rarefaction wave and its effect on the velocity of the contact
surface of the specimen is similar to that in the case of the free surface ǣ = 0 considered above. In this case,
the amplitude of second step of the precursor depends on ǣ. This conclusion is supported experimentally for the
Ti–6Al–4V alloy [11], where a two-step precursor in the velocity profile of the specimen–LiF contact surface (ǣ < 1)
and a one-step precursor for the specimen–sapphire contact (ǣ > 1) were determined.

3. Damage of a Plane Plate Produced by a Cylindrical Impactor. Using Eqs. (1), we solve
numerically the model problem of the normal-impact damage of a plate of finite thickness, produced by a cylindrical
impactor with a velocity of 185 m/sec. The phase shift caused by wave interaction was ignored. Equations (1) were
solved by a numerical method similar to that used in [12].

The material of the impactor and target is aluminum with parameters ρ0 = 2.61 g/cm3, C0 = 5.3 km/sec,
and Clong = 6.4 km/sec. As the constitutive equation, we use the equation that corresponds to an ideal-plastic
body with the dynamic yield point Y = 0.18 GPa [13]. The impactor thickness is l = 1.14 mm and the target
thickness is L = 2.8l. The radius of the impactor is r0 = 6l. Hence, ν = 0.229 and ε∆ = 1/36 in Eqs. (1). The
characteristic time is t0 = l/C0 = 0.215 µsec. The initial and boundary conditions have the form

V1(z = 0, ξ1, r′) = εv(ξ1)R(r′),
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Here
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{

1, ξ1 ∈ [0, 2− (α+ 2)u0/(8C0)],
0, ξ1 /∈ [0, 2− (α+ 2)u0/(8C0)],

(8)
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Fig. 3. Damage regions of the plate for t = 3.92t0 (a) and 3.98t0 (b).

and the impact velocity is u0 = 185 m/sec. The parameter ε = 2Pm/K = 0.036 (Pm is the stress amplitude).
It follows from (8) that the collision of the plates occurs at the moment ξ1 = t = 0. In (8), the effect of lateral
unloading is ignored because the transverse dimensions of the impactor considerably exceed its thickness. At the
free surface z = L/l, the boundary conditions V2 = −V1 and ξ2 = ξ1 are specified.

Equations governing the evolution of the material damage are taken the same as in [14]. The specific volume
of microdefects ω is used as a damage measure. It is assumed that the material of the plate fails when the damage
reaches the critical value. Figure 3 shows the calculation results for the two-dimensional damage of the plate (the
impact is performed along the lower surface 0 6 r/r0 6 1) for regions corresponding to ω > 0.01. In Fig. 3b, the
central region enclosed by the lines corresponds to the failed material. The calculations show that the minimum
time it takes for the spall surface to form is 3.98t0. Failure begins under the impactor (Fig. 3a) and then propagates
toward the center to form a disc-shaped crack (Fig. 3b). A similar result was obtained in [15, 16] by solving
numerically the exact starting system of equations. In Fig. 3b, the dashed line shows the location of the spalling-
fracture line predicted in [15] by solving a similar problem with close parameters of the material and impactor. One
can see that the location of the spalling line agrees with our calculations.

In summary, the results obtained show that the model equations proposed describe qualitatively the stress-
distribution evolution in the regions of elastic and plastic flow and can be used to solve one- and two-dimensional
problems of pulsed deformation and fracture of elastoplastic media.
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